Quantile dispersion graphs for evaluating and comparing designs for logistic regression models
نویسندگان
چکیده
Designs for 0tting a generalized linear model depend on the unknown parameters of the model. The use of any design optimality criterion would therefore require some prior knowledge of the parameters. In this article, a graphical technique is proposed for comparing and evaluating designs for a logistic regression model. Quantiles of the scaled mean-squared error of prediction are obtained on concentric surfaces inside a region of interest, R. For a given design, these quantiles depend on the model’s parameters. Plots of the maxima and minima of the quantiles, over a subset of the parameter space, produce the so-called quantile dispersion graphs (QDGs). The plots provide a comprehensive assessment of the overall prediction capability of the design within the region R. They also depict the dependence of the design on the model’s parameters. The QDGs can therefore be conveniently used to compare several candidate designs. Two examples are presented to illustrate the proposed methodology. c © 2003 Elsevier Science B.V. All rights reserved.
منابع مشابه
Comparing Multi-level and Ordinary Logistic Regression Models in Evaluating Factors Related to Periodontal Clinical Attachment Loss
Background and Objectives: Periodontal disease is one of the most common oral health problems. Clinical attachment loss occurs in sever periodontal cases (CAL>3). In this study, we applied a classic regression model and the models that consider the hierarchical structure of the data to estimate and compare the effect of different factors on CAL. Methods: This cross-sectional study was perfo...
متن کاملFinite Sample Properties of Quantile Interrupted Time Series Analysis: A Simulation Study
Interrupted Time Series (ITS) analysis represents a powerful quasi-experime-ntal design in which a discontinuity is enforced at a specific intervention point in a time series, and separate regression functions are fitted before and after the intervention point. Segmented linear/quantile regression can be used in ITS designs to isolate intervention effects by estimating the sudden/level change (...
متن کاملBayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملSemi-parametric Quantile Regression for Analysing Continuous Longitudinal Responses
Recently, quantile regression (QR) models are often applied for longitudinal data analysis. When the distribution of responses seems to be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. In this paper, a semi-parametric quantile regression model is developed for analysing continuous longitudinal responses. The error term's distribution is assumed to be Asymmetr...
متن کاملThe Comparison of Credit Risk between Artificial Neural Network and Logistic Regression Models in Tose-Taavon Bank in Guilan
One of the most important issues always facing banks and financial institutes is the issue of credit risk or the possibility of failure in the fulfillment of obligations by applicants who are receiving credit facilities. The considerable number of banks’ delayed loan payments all around the world shows the importance of this issue and the necessary consideration of this topic. Accordingly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 43 شماره
صفحات -
تاریخ انتشار 2003